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Abstract The Lindstedt–Poincare technique has traditionally been used to deal with
oscillators with power-law potentials. We show how this method can be extended to
deal with molecular potentials for which the frequency goes to zero as the energy
approaches zero. The extension requires the use of an asymptotic analysis which is
combined with perturbation theory. For the Morse potential, we get an exact answer

while for the Lennard Jones class of potentials V = V0

[( a
x
)2n − ( a

x
)n

]
, the answer

is generally approximate with some values of n giving exact results. For the widely
studied case, n = 6, our approximation gives better than 1% accuracy at the lowest
order of calculation. We show that as n → ∞, the result tends to that for the Morse
potential. We also point out that the time period obtained by us can be used to obtain
the quantum mechanical energy levels of these potentials within the Bohr-Sommerfeld
scheme.

Keywords Molecular potentials · Lindstedt Poincare perturbation theory ·
Asymptotic analysis · Morse potential · Lennard Jones potential ·
Bohr Sommerfeld quantisation

1 Introduction

It is well known that for the Morse potential V = V0
(
e−2ax − 2e−ax

)
there is a peri-

odic motion for negative total energy E. The potential is shown in Fig. 1 and as shown
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Fig. 1 The Morse potential

by the dashed line corresponding to a negative value of E, the motion is bounded
between the turning points x1 and x2.

For E > 0 the motion is clearly unbounded. For E = 0, the dividing line between
bounded and unbounded motions, the time period becomes infinitely big. The answer
for the time period T for this case has been worked out in the mechanics text of Jose

and Saletan [1] and is found to be T = π
a

√
− 2

E . As expected the time period diverges
as E → 0. The singularity is of the power law variety. This is in contrast to another well
known case of divergent period which occurs for the potential V(x) = −x2/2 + x4/4
shown in Fig. 2.

This is a double well potential and for E < 0, the oscillations occur in one well with
turning points x1 and x2 and for E > 0 oscillations take place across the two wells.
For the dividing case of E = 0 the frequency goes to zero. However the behaviour
near E = 0 is given by T proportional to ln(1/|E|) as opposed to the power law for

the Morse potential. For the potential V(x) = V0

[
x2

2 − x3

3 − 1
6

]
shown in Fig. 3 the

orbits are unbounded for E > 0 and bounded for E < 0. As E → 0 the time period
diverges as ln(1/|E |).

We first need to clarify the reason behind the two different behaviours—the power
law divergence of the Morse potential and the potentials of Figs. 2 and 3. Writing the
oscillations as a dynamical system we find that

ẋ = y

ẏ = −V′(x)

The fixed points (equilibrium points) are given by the zeroes of V′(x) i.e. the extrema
of V(x). While the Morse potential has only one equilibrium point the other potentials
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Fig. 2 Double well potential

Fig. 3 Cubic potential

have multiple. The potential of Fig. 2 has 3 and that of Fig. 3 has 2. One of these
multiple fixed points is a saddle. In Fig. 2 the fixed point x = 0 is the saddle and in
Fig. 3 the saddle is x = 1. As argued in Strogatz [2] the time period goes to infinity
when the homoclinic orbit is formed (starting and ending at the same fixed point) and
from the general structure of the flow near a saddle it can be seen that the time period
diverges logarithmically. In contrast, for the Morse potential, the saddle is at infinity.
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Fig. 4 Lennard Jones potential

The limiting trajectory i.e. the one for E = 0 is not a truly homoclinic orbit and hence
the argument of Strogatz for the logarithmic divergence does not hold here. Is the
behaviour shown in Eq.1.1 universal when there is only one equilibrium point?

Exact analytic forms for the time period are few and far between. Hence it would be
nice to develop a perturbative method which can tackle potentials of the type shown in
Fig. 1. We noted that the Lindstedt–Poincare procedure (hereafter referred to as LP)
which is one of the most useful tools for analysing nonlinear oscillations has never
been used for oscillations of the kind shown in Fig. 1. In recent years [3–10], LP has
often been used for developing efficient numeric methods for studying anharmonic
oscillators (quartic, cubic etc). We decided to use the traditional LP but widen its scope
to include potentials of the kind shown in Fig. 1. Further we augmented it by includ-
ing certain asymptotic behaviour to include potentials of the Lennard-Jones variety. It
should be noted that for oscillations of Figs. 2 and 3 the LP method is not applicable
for E approximately zero because of homoclinic orbit at E = 0. Here we explore first
the LP method for the Morse oscillator. To our surprise we find that at every order it
reproduces the exact answer of Eq. 1.1. Emboldened by this we try the same technique
on a class of potentials similar to the one shown in Fig. 1. A typical member of this
class is the Lennard-Jones potential—an attraction 1/x6 at large distances and repul-
sion 1/x12 at short distances. This is a potential which gives a good account of the force

between two gas molecules. The potential can be written as V = V0

[( a
x
)12 − ( a

x
)6

]
.

In the above V0 is the strength of the potential and ’a’ is a distance scale. The potential
is sketched in Fig. 4.

The similarity with Fig. 1 is obvious. There will be bounded oscillatory motion for
E < 0 as E → 0 the time period will diverge. Will the divergence follow a −E−1/2

behaviour as found for the Morse oscillator? We will show that for the class of poten-
tials where the exponent 6 of the Lennard Jones is replaced by n and the 12 by 2n the
divergence as E → 0 is governed by an exponent which is a continuous function of
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n. If n goes to infinity we get the result of the Morse potential where the divergence
occurs with an exponent 1/2. Indeed this is expected because in the Morse potential
the approach to V = 0 as x goes to infinity is exponentially fast which is faster than the
power law approach of the generalised Lennard Jones form. Hence the Morse potential
is the n = ∞ limit of the generalized Lennard Jones potential. This would imply that
for any potential with an exponentially fast approach to zero, the divergence should
occur with exponent 1/2. We test this out with the potential V(x) = −V0/cosh2(x/a)
and find that indeed in this case the divergence occurs with exponent 1/2. The diver-
gent behaviour as E → 0 can be combined with LP to give interpolation formulae
which give accurate values of time period for all values of E. The interpolation formula
can be exact for certain types of potentials. This formula serves another very useful
purpose. It allows us to connect with the corresponding quantum mechanical problem.
Once T(E) is known the action can be found as

J(E) =
∫

T(E)dE + constant (1.1)

The constant can be found by a direct evaluation of J(0). Once J(E) is known the Bohr
Sommerfeld criterion gives the energy eigenvalues through the condition

J(E) = (n + α)h, where α is a constant. For a one dimensional potential with two
turning points, α = 1/2.

In Sect. 2 we extend LP to the Morse oscillator and in Sect. 3 to the Lennard Jones
class of potentials. A brief conclusion is given in Sect. 4.

2 Lindstedt Poincare technique and the Morse oscillator

In this section we apply the Lindstedt Poincare technique (LP) to the Morse oscillator
whose potential we write as

V(x) = V0
(
1 − e−ax)2

(2.1)

The energy E′ of this potential is simply related to the energy E of the potential of
Fig. 1 by the relation E′ = E + V0. To apply LP we expand the potential of Eq. (2.1)
as

V(x) = V0

(
ax − a2x2

2
+ a3x3

6
− a4x4

24
+ · · ·

)2

= a2x2
(

1 − ax + 7a2x2

12
− a3x3

4
+ 31a4x4

360
+ · · ·

)
(2.2)

Treating a as a small parameter this would entail working to O(a4) in perturbation
theory the equation of motion can be written as

ẍ + 2V0a2x = 3V0a36x2 − 7

3
V0a4x3 + 5

4
V0a5x4 − 31

60
V0a6x5 + · · · (2.3)
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We can scale the time by
(
2V0a2

)1/2
i.e. define τ = (

2V0a2
)1/2

t to write

d2x

dτ2 + x = 3

2
ax2 − 7

6
a2x3 + 5

8
a3x4 − 31

120
a4x5 (2.4)

Using a as the perturbation parameter, expanding

x = x0 + ax1 + a2x2 + a3x3 (2.5)

and introducing the dressed frequency � such that

�2 = 1 + a ω2
1 +a2 ω2

2 +a3 ω2
3 + · · · (2.6)

one arrives at

d2x

d τ2 + �2x = 3

2
ax2 − 7

6
a2x3 + 5

8
a3x4

− 31

120
a4x5 + · · · + (a ω2

1 +a2 ω2
2 +a3 ω2

3 + · · · )x (2.7)

and at different orders of a the equations

d2x0

dτ2 + �2x0 = 0 (2.8a)

d2x1

dτ2 + �2x1 = 3

2
x2

0 + ω2
1 x0 (2.8b)

d2x2

dτ2 + �2x2 = 3x0x1 − 7

6
x3

0 + ω2
1 x1 + ω2

2 x0 (2.8c)

d2x3

dτ2 + �2x3 = 3

2
(x2

1 + 2x0x2) − 7

2
x2

0x1 + 5

8
x4

0 + ω2
1 x2 + ω2

2 x1 + ω2
3 x0 (2.8d)

d2x4

dτ2 + �2x4 = 3(x0x3 + x1x2) − 7

6
(3x2

0x2 + 3x0x2
1) + 5

2
x3

0x1 − 31

120
x5

0 + ω2
1 x3

+ω2
2 x2 + ω2

3 x1 + ω2
4 x0 (2.8e)

We employ the initial conditions x(t = 0) = A and ẋ(t = 0) = 0. Writing the solution
of Eq. (2.8a) as

x0 = A cos �t (2.9)

all the subsequent equations have to be solved under the initial conditions xn(0) =
ẋn(0) = 0. We now work out Eq. (2.8b) as

d2x1

dτ2 + �2x1 = 3A2

4
(1 + cos 2�t) + ω2

1 A cos �t (2.10)
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The central point of LP is to remove the secular terms i.e. the resonance producing
terms from the right hand side of the equation ẍn + �2xn = Fn(t) by a proper choice
of ω2

n. In this case of x1 the only secular term on the r.h.s. is ω2
1 A cos �t and it is

removed by setting ω2
1 = 0 which keeps �2 = 1 at this order. The solution for x1 can

now be written as

x1 = 3

4
A2 − 1

4
A2 cos 2�t − 1

2
A2 cos �t (2.12)

We now explore Eq. (2.8c) and write

d2x2

dτ2 + �2x2 = −3

4
A3 cos �t + A3 cos �t − 3

4
A3 cos 2�t

−2

3
A3 cos 3�t + ω2

2 A cos �t (2.13)

Removal of secular terms on the r.h.s. of Eq. (2.13) requires

ω2 = −A2 (2.14)

At this order the frequency of oscillations is given by

�2 = 1 − A2a2 (2.15)

In terms of the amplitude A the energy of motion can be written as

E′ = V(A)

= a2A2
[

1 − aA + 7

12
a2A2 + · · ·

]
(2.16)

Working to O(a2) we see that E′ = V0a2A2 and hence Eq. (2.15) can be written as

�2 = 1 − E′

V0
= − E

V0
(2.17)

The solution for x2 at this order can be written down from Eq. (2.13) as

x2 = −3

4
A3 + 1

4
A3 cos 2�t + 1

12
A3 cos 3�t + 5

12
A3 cos �t (2.18)

We now obtain from Eq. (2.8d)

d2x3

dτ2 + �2x3 = A4
[

3

32
− cos �t + 1

16
cos 2�t + cos 3�t + 15

32
cos 4�t

]

+ω2
3A cos �t (2.19)

The removal of resonance term requires ω2
3 = A3 (2.20)
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At this order the frequency becomes

�2 = 1 − a2A2(1 − aA) (2.21)

At the same order the energy E′ would be given by E′ = V0a2A2(1 − aA) and thus to
this order we again recover from Eq. (2.21)

�2 − 1 − E′

V0
= − E

V0
(2.22)

We can now write down x3 as

x3 = A4
[

3

32
− 1

48
cos 2�t − 1

8
cos 3�t − 1

32
cos 4�t + 1

12
cos �t

]
(2.23)

Long and tedious algebra involving Eq. (2.8e) again leads to �2 = −E/V0. Thus at
every order in the LP we get the dimensional frequency as

ω = a
√−2E (2.24)

which is the exact answer.

3 Lindstedt Poincare technique and the Lennard-Jones class of potentials

Having seen the effectiveness of Lindstedt–Poincare technique for a Morse oscillator
in the previous section we now try it out on a class of potentials of similar shape,
namely

V (x) = V0

[
(a/x)2n − (a/x)n

]
(3.1)

where n is a positive number. The dimensional constants V0 and a set the scales for the
energy and the distance respectively. For n = 1 we have a Coulomb attraction with a
short range repulsion while for n = 6 we have the well known Lennard-Jones potential.
Oscillatory motion will exist in this potential for E < 0. The minimum of this potential
is at x = x0 obtained from

2 (a/x0)
n = 1 (3.2)

We expand about the minimum writing x = x0 + y so that

E = −V0/4 + V0(n
2/4)(y/x0)

2 − V0[n2(n + 1)/4](y/x0)
3

+V0[n(n + 1)(7n2 + 11n)/48](y/x0)
4 (3.3)

Clearly the minimum possible value of E is −V0/4 and hence oscillatory motion will
occur in the range −V0/4 < E < 0. As E → 0 the frequency of the oscillations tends
to zero. The energy expressed in terms of the amplitude A of the oscillations is
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E = −V0/4 + V0(n
2/4)(A/x0)

2 − V0[n2(n + 1)/4](A/x0)
3

+ V0[n2(n + 1)(7n + 11)/48](A/x0)
4 . . . (3.4)

The equation of motion in terms of y is

d2y/dt2 + (n2/2)(V0/x2
0) y = (3V0/4)[n2(n + 1)/x0](y/x0)

2

−(V0/12)[n2(n + 1)(7n+11)/x0](y/x0)
3 (3.5)

Defining the dimensionless variables

z = y/x0

τ2 =
(

n2/2
) (

V0/x2
0

)
t2 = n2V02−2/nt2/2a2 = t2/τ2

0 (3.6)

where τ0 = 21/n+1/2a
n
√

V0
we get

d2z/dτ2 +z = 3/2 (n + 1) z2 − 1/6 (n + 1) (7n + 11) z3 (3.7)

The frequency correct to A2 order, following the method of Sect. 2, is

�2 = 1 −
{

5/6
[
9 (n + 1)2 /4

]
− 3/4 [n (n + 1) (7n + 11) /6]

}
A2/x2

0

= 1 − 4E′

V0

(
1 + 1

n

) (
1 + 1

2n

)
(3.8)

where E′ = E + V0/4.
We expect � to vanish at E′ = V0/4. Unlike the Morse oscillator we do not see

that �2 = 1 − 4E′/V0. We can however characterize the behaviour at E′ = V0/4 by

�2 = �2
0(1 − 4E′/V0)

β

= �2
0

[
1 − 4 β E′/V0 + higher order in E′/V0

]
(3.9)

where �0 is a constant independent of E′.
Comparing with Eq.(3.8)

β = (1 + 1/n) (1 + 1/2n) (3.10)

There is an obvious weakness in the above identification of β. The asymptotic form
of Eq. (3.9) would be equally valid if

�2 = �2
0 (−4E/V0)

β f(E′/V0) (3.11)

where f(E′/V0) is some analytic function of E′/V0 with the expansion

f(E′/V0) = 1 + C1(−4E′/V0) + C2(−4E′/V0)
2 + · · · (3.12)

123



J Math Chem (2012) 50:1398–1410 1407

where the C′
is are constants. In this case the expansion around E′ = 0 has the form

�2 = �2
0[1 − 4 β E′/V0 + C1(−4E′/V0) + · · · ] (3.13)

and leads to, on comparing with Eq. (3.8),

β + C1 = (1 + 1/n) (1 + 1/2n) (3.14)

Thus β can be identified with the form of Eq. (3.9) if f(E′/V0) = 1 i.e. �2 proportional
to (−E)β is an exact answer for all E.

To explore what is known about the exact frequency we start from the general for-
mula of obtaining the time period. This can be found from the energy conservation as
(we take the mass to be unity)

E = 1/2 (dx/dt)2 + V (x)

= 1/2 (dx/dt)2 + V0

[
(a/x)2n − (a/x)n

]

or, dt = dx√ {
2

[
E − V0 (a/x)2n + V0 (a/x)n]} (3.15)

If x1 and x2 with x2 > x1 are the two turning points of the motion i.e. x1 and x2 are
the positive real roots of

E = V0[(a/x)2n − (a/x)n]

then the time period is

T = √
2

x2∫

x1

dx√ {
E − V0 (a/x)2n + V0 (a/x)n} (3.16)

Using the dimensionless variables y = (a/x)n and E/V0 = A
we find

T =
√

2a

n
√

V0

y1∫

y2

dy

y(n+1)/n√ {
A − y2 + y

} (3.17)

where y1 and y2 are the roots of A − y2 + y = 0 with y1 > y2. The roots are found
to be

y1,2 = 1/2
[
1 ± √{1 + 4A}]

Our interest is in the situation E < 0 and hence A < 0. As A → 0 the two roots y1,2
tend to 1 and −A respectively. In this limit Eq. (3.17) acquires the approximate form
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(we note that most of the integrand comes from y ≈ |A| and hence y2 can be neglected
in comparison to y)

T =
√

2a

n
√

V0

1∫

|A|

dy

y(n+1)/n√{y − |A|}

=
√

2a

n
√

V0

1

|A|1/2+1/n

∞∫

1

dz

z(n+1)/n√{z − 1}

For A → 0 we obtain

T = π
(
a/

√
V0

) (
1/√

2

)
(V0/ − E)1/2+1/n (3.18)

For n = 1 the integral in Eq. 3.10 can be evaluated exactly and we get

T = π
(
a/

√
V0

) (
1/

√
2
)
(−V0/E)3/2 (3.19)

The asymptotic from of Eq. (3.18) is in this case the exact result.
For the case of arbitrary n we note that β = 1+2/n. From the LP result we thus find

C1 = 1 + 3/2n + 1/2n2 − 1 − 2/n

= 1/2n (1/n − 1) (3.20)

As expected for n = 1, C1 = 0 from the Lindstedt Poincare theory which in this case
yields the exact answer.

Let us consider n = 1/2 which will turn out to be another solvable case. In this case
C1 = 1 from Eq. (3.20) and from Eq. (3.11)

� = �0(−4E/V0)
5/2(1 − 2E′/V0 + · · · )

Inverting to find the time period

T = τ0(−V0/4E)5/2(1 + 2E′/V0)

= τ′
0(−V0/4E)5/2 (1 + 4/3 E/V0) (3.21)

Turning to Eq. (3.17) in this case the exact time period is

T = 2
√

2
a√
V0

y1∫

y2

dy

y3√{A − y2 + y}

= τ′
0(−V0/4E)5/2 (1 + 4/3E/V0) (3.22)

Amazingly enough, first order Lindstedt Poincare gives the correct answer.

123



J Math Chem (2012) 50:1398–1410 1409

We now turn to the well known Lennard Jones potential for which n = 6. This leads
to β = 4/3 and C1 = −5/72 and from Eq. 3.06A

� = �0(−4E/V0)
2/3 [1 + 5/18 (E/V0 + 1/4) + · · · ]

= �′
0(−4E/V0)

2/3 [1 + 20/77 E/V0] (3.23)

The time period in this lowest order approximation is

T = τ0(−V0/4E)2/3/ (1 + 20/77 E/V0) . (3.24)

This formula matches the exact numerically evaluated answers to within 1% for all
values of E.

4 Conclusion

For a variety of potentials like the Morse potential, the Lennard-Jones class of poten-
tials etc, we have used LP, at times augmented with an asymptotic analysis for E → 0,
to find the time period T(E) of oscillatory motion as a function of the energy. Sometimes
the result is exact as is the case for the Morse potential and sometimes numerically
accurate as for the Lennard Jones potential. As explained on the introduction, knowing
T(E) allows us to infer the energy eigenvalues from the Bohr Sommerfeld quantisation
condition. For the Morse potential

(
n + 1

2

)
h = J(E) − J(0) − 2 π

a

√−2mE =
(

n0 + 1

2

)
h − 2 π

a

√−2mE (4.1)

where J(0), found by direct evaluation, is such that n0 =
√

2mV0
h̄a .

Inserting this in Eq. (4.1) one gets the exact bound state energies for the Morse
potential. For the Lenard Jones potential, T(E) is an excellent approximation and it
leads to

J(E)=J(0) + 2 π

(
77

20

)1/3 (
72

77

) √
V0a2

25/3

[
1

3
ln

1 − y√
1 + y + y2

− 1

3
tan−1 y

√
3

y + 2

]

(4.2)

where y =
(
− 20E

77V0

)1/3
. Setting J(E) = (

n + 1
2

)
h we can now get the energy levels

by solving a transcendental equation. We get 5% accuracy for all n, 0 < n < 23.
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